a2 United States Patent

Mangalore et al.

US009418209B2

US 9,418,209 B2
Aug. 16, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(65)

(60)

(1)

SYSTEMS AND METHODS FOR
MANIPULATING SENSITIVE INFORMATION
IN A SECURE MOBILE ENVIRONMENT

Applicant: MOTOROLA MOBILITY LLC,
Libertyville, IL, (US)

Inventors: Geetha Mangalore, San Diego, CA

(US); Lorne J. Lameer, Burlington, W1

(US); Paul Moroney, La Jolla, CA (US)

Assignee: GOOGLE TECHNOLOGY
HOLDINGS LLC, Mountain View, CA
(US)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 53 days.

Appl. No.: 14/043,233

Filed: Oct. 1, 2013
Prior Publication Data
US 2014/0095890 A1 Apr. 3,2014

Related U.S. Application Data

Provisional application No. 61/709,149, filed on Oct.
2,2012.

(52) US.CL
CPC ... GO6F 21/10 (2013.01); GOGF 21/60
(2013.01); GOGF 2221/0797 (2013.01); GO6F
2221/2105 (2013.01); HO4L 2209/603
(2013.01); HO4L 2463/101 (2013.01)
Field of Classification Search
CPC ... GOG6F 21/10; GOGF 21/6218; GOGF 21/60;
HOA4L 2463/101; HO4L 2209/603
USPC i 713/189; 726/27
See application file for complete search history.

(58)

(56) References Cited

U.S. PATENT DOCUMENTS

2004/0030907 Al* 2/2004 Darielcccoovvviivinn. 713/189
2006/0137017 Al* 6/2006 Evansetal. 726/26
2006/0271998 Al* 11/2006 Kadambi et al. 725/135
2009/0006868 Al* 1/2009 Alkoveetal. 713/193
2014/0075582 Al* 3/2014 Hierro etal. 726/30

* cited by examiner

Primary Examiner — Saleh Najjar
Assistant Examiner — Peiliang Pan
(74) Attorney, Agent, or Firm — Morris & Kamlay LLP

(57) ABSTRACT

Methods and devices for protecting and manipulating sensi-
tive information in a secure mobile environment are dis-
closed. Methods and devices for processing secure transac-
tions and secure media processing up to rendering in human
readable form using abstract partitioning between non-secure

Int. CL. and secure environments are disclosed.
GOG6F 21/10 (2013.01)
GOG6F 21/60 (2013.01) 31 Claims, 9 Drawing Sheets
332~ 330
NON-SECURE TEE OR SECURE
ENVIRONMENT ENVIRONMENT
38~ 106
CONTENT PLAYER
APPLICATION ("APP") —> DRM SERVER
336~ ~340 348
csAPl | | DRMAGENT |
342 350~ 884~ 346
DRM
DRM SECURE FILE
O cLr-s | ORYP- |1 ™ sysTeEM
344
0S SECURE KERNEL
3204~ 3208
APPLICATION
PROCESSOR SECURE PROCESSOR
3604~ 3608
NON-SECURE
MEMORY SECURE MEMORY

US 9,418,209 B2

Sheet 1 of 9

Aug. 16, 2016

U.S. Patent

00!

H3IAY3S WA

["DIA

301A3d
OINO¥L10313

80/

MHOMLAN

|
|
|
|
|
|
|
|
|
“
¢ 3 | ¢ 3
| SNOILYOINNWNOD
|
|
|
|
|
|
|
|
|
|

AHOMLAN
NOILNGIY.1SId
IN3INOD

20!

US 9,418,209 B2

Sheet 2 of 9

Aug. 16, 2016

U.S. Patent

d¢ DIA

482
[

|

Y

AHOW3IN
34NO3S

AJON3IN
F4NJ3S
NON

A
G6c

>1MS ALIMNOIS TVOILIMO
NOILNO3X3 3HNO3S [|

JHVMAHVYH

L—G6¢
— 08¢

A
06¢

JHYMLI0S
WHO41V1d

— 048

§9¢

0G¢

JHVML40S FdNO3S
| TVOLLIYD NON

JHVYMLIO0S NOILYOIddY

—09¢

37190W F4ND3S

AHOW3N
34N03S
NON

A
0v¢

00¢

V¢ DIA

JHVYMAHVH

— 08¢

JHVYMLI0S
WHO41Y1d

—0c¢

Gie~—

JHVMLA0S ALI-IND3S

JHVMLIOS NOILYOI'lddY

—0/¢

1190 AYYNIQHO

US 9,418,209 B2

Sheet 3 of 9

Aug. 16, 2016

U.S. Patent

]
|
1
| AHOWAW
AHOW3W NO3S | TMNDIS-NON
098~ H m V098
|
“ ¥0SSIN0Yd
d0SS330¥d FNI3S m NOLLYDITddV
$0287 | vozE
1
|
TINYTY TUNOTS e SO
|
yhg- m
1
NsAS || gon [S0 et o N
3714 3¥ND3S WYd ! e
1
9rg- “pge 058 1 2ned
INIOV WHa m IdY S/9
gre- m 0r8- 988
| (uddV¥.) NOLLYOI1ddY
YINGIS WHa | Y3AVTd INJINOD
90! ! 868
INJWNOHIANT i INJNNOXIANS
FNOISHO F4L “ FNOIS-NON
088 \ I f/Nmm.

US 9,418,209 B2

Sheet 4 of 9

Aug. 16, 2016

U.S. Patent

00y

(331)
b
OLLADIX HIAYId VIGIW
//NNV ~ 1744
W3LSAS AY1dSIa umi zoﬁ“oumm_%
. ONISSID0Ud .
bey o3ainvolany 6l
NILSASOINY le— “pey WILSAS
- ONILYH3dO
44 1¥0d <oy
v1va vIaaw
08y SNOLLYOI1ddY
EREL
{S)L80d JOYLINOD ANV sy
1NdNI Y1va ONISSIO0¥d
\-90¢ NIt
v1vad 39IA3d
(S)MIAITOSNYAL (b0y
SIH0SSID0Nd
zo_zo_z:_\,__\,_,mo r (S)3DIA3A AHOWIW
200 80
391A3 <zl

US 9,418,209 B2

Sheet 5 of 9

Aug. 16, 2016

U.S. Patent

008

il

7~ SYNNHD ~
. '
o =
ONINYIHLS 6l§ -
> I714 AOVEAV1d
1S3SINVI
\
01S “.\ >
HIAYIS e _
\
N (eED Aggg 5o
INTLNOD
vIa3aw
TYNOMO e »
£0S

US 9,418,209 B2

Sheet 6 of 9

Aug. 16, 2016

U.S. Patent

009

> C69
- 069 SNLV1S-Zl
NIMOL ‘SIHOIM JAVS
J9VSSIN SS300UdHA_| o89
SFOVSSIN SSI00H0L [089
3OVSSIN
SLHOIY ‘NINOLHLNY-6
_ »— /9
S1HOM ‘NIMOL
019« NOILYZI4OHLNY
(QIDQON)SLHOMLID L 183ND3-8
< >G99
ISNOJSTH/ADYSSIN
| (g9 YILSIORIY
JOVSSIWHILSIOTY-S
— 569
J9VSSIN
3131dNOD
- »— (59
STVILNIaIND
IN3MO NIVLEO-E - (o2
9SWYILSIDIHILITdNODZ
> 0r9
(¥aLsioI-1
(33L) m%\ﬂwm YASLNIIO
OLS A ENAEN ddV IN3ID H3AAYAS WHA
34N23S AN
-G89 089 \-629 \-G19 \-609
Vud (331)30vds N0z 3OVdS ¥3SN
029 019

US 9,418,209 B2

Sheet 7 of 9

Aug. 16, 2016

U.S. Patent

004

< _ G4
Al'ATM IAVS-9
09/
AN ALNdWOD
OVL A3X ISHVd-S
- [y

. Al 138

OVL A3X SSID0Hd-¥

Al 'OYL A3) NIVLEO0

1S3INVIN 3SUVd-E
06/
et o -
1SAINVIN 139C She
>0l
(14N) AV1d-1
(331) m%__\m_%_m MOSINIITO EENVER
JY0LS MNO3S TMN03S ddV IN3I19 ED
34N93S g
58/ 084 624 -6l -0/
/7 (@a0)30vds 24038 JOVdS ¥3SN
024 044

US 9,418,209 B2

Sheet 8 of 9

Aug. 16, 2016

U.S. Patent

SY344n49 I™ND3S
35N OL ¥3ANTY
NV 300030 (= _ 088
ATINO SMOTTV H3AN3H 3000308
TIVMINI4 : 3LON iy NOILdVD d3S0TD =22 : ALON
T3ATT
NOILO3LO¥d LNdLNO

03aIA mm%:m M%ﬁm

) NI 03dIAY344Ng

o1any 01 XNW3a-9 0 E6A 00 VE g

INILNOD ¥V 106
098
INGH - 558
03I 1dAY03Q-€
< 098
(LNILNOD ‘IT1aNVH
¥344n4d 34ND3S)
INILINOD HSNd-Z
> GpQ
vLva
INTINOQQILdANONT
STH 139}
EET (330
JOIAN3S IDIAN3S ¥3IANTY MAS INTTO ddV IN3MD HIAYIS
34N03S 34ND3S -30003a 34N03S VIQ3aw
WYd YISHVd
P r%ﬂ v -G89 058 mw,mm 2 618 -G08
331)30vdS IM¥NO3S
008 mﬁcwm @Sm

US 9,418,209 B2

Sheet 9 of 9

Aug. 16, 2016

U.S. Patent

Sy344ng F¥ND3S
3SN OL ¥IANIY
NV 300030 | _ S86
AINO SMOTTY HAANAY 3002306
TIVMINI : 310N
»—(86
T3ATT
zo_BuyoE T@&%o
¥344n9 3¥ND3
03QIA ¥0 olany .
ATIVIY A1 M03HO-L NI O3dIA ¥344nd
L C/6 43SN O1dnv-8
046~ o)
INTILNOD ¥vI10-9
596
IWAH
‘SIHON 1 1dANO3q+ 096
MO3HI-C < cCp
JTANVH ¥344nd
i oarwianas
0 0 S 714 vdN AV1d-2 056
Sr6
14
ydN QYO TNMOQ-|
EET (331)
J0IAY3S J0IAN3S HIANTY MAS INAMD a4dV INTD HIANIS
34NO3S 3¥ND3S -100930 ND3S VIQan
Wyd ¥3ASHVd
N rew&. \-Gg6 086 m_w,mwmm_m \-Gl6 \-606
331)39VdS FUND3S
006 ﬁ%m oem

US 9,418,209 B2

1
SYSTEMS AND METHODS FOR
MANIPULATING SENSITIVE INFORMATION
IN A SECURE MOBILE ENVIRONMENT

CROSS-REFERENCE TO RELATED
APPLICATIONS

The present application claims the benefit of U.S. provi-
sional patent application No. 61/709,149, entitled “A method
of Architecture definition of secure playback of HD content
using Trusted Execution Environment (TEE) for OTT (Over
the Top) and Home Network™ filed Oct. 2, 2012, incorporated
herein by reference in its entirety.

FIELD

The disclosure relates generally to the field of digital rights
management (DRM), and more particularly to the field of
protecting and manipulating sensitive information in a secure
environment with emphasis to playback of protected high
definition) (HD) content having additional restrictions.

BACKGROUND

Digital content distribution systems conventionally
include a content server, a content player, and a communica-
tions network connecting the content server to the content
player. The content server is configured to store digital con-
tent files, which can be downloaded from the content server to
the content player. Each digital content file corresponds to a
specific identifying title, such as “Gone with the Wind,”
which is familiar to a user. The digital content file typically
includes sequential content data, organized according to play-
back chronology, and may comprise audio data, video data, or
a combination thereof. The stored content can also be
streamed to the client. In addition, the client can stream from
a live source such as a tuner-based server e.g., broadcast
service.

The content player is configured to download or stream and
play a digital content file, in response to a user request select-
ing the title for playback. The process of playing the digital
content includes decoding and rendering audio and video data
into an audio signal and a video signal, which may drive a
display system having a speaker subsystem and a video sub-
system. In the case of streaming, the content data is transmit-
ted from an already-created content file sequentially to the
content player. Streaming can also be live when the source is,
for example, from a tuner using HTTP Live Streaming pro-
tocol (HLS). In this embodiment, HLS is used for streaming.
The downloaded file can be either in HLS or MP4 ISO14496-
12 formats. The player is configured to play the digital content
as described above.

Content data is typically encrypted and needs to be
decrypted before the data can be played. The playback pro-
cess, therefore, includes four steps, (i) retrieve content, (ii)
decrypt content, (iii) decode content and (iv) output content.
For the purposes of content protection, the content is most
vulnerable at step (ii). At this step, the decrypted (and, there-
fore, unprotected) but still compressed content data is avail-
able. Since it is not always desirable or possible to prevent
execution of un-trusted code, the decrypted content at step (ii)
is vulnerable to attacks from third-party applications.

BRIEF DESCRIPTION OF THE DRAWINGS

The details of the present disclosure, both as to its structure
and operation, may be understood in part by study of the

10

15

20

25

30

35

40

45

50

55

60

65

2

accompanying drawings, in which like reference numerals
refer to like parts. The drawings are not necessarily to scale,
emphasis instead being placed upon illustrating the principles
of the disclosure.

FIG. 1 illustrates a content distribution system configured
to implement embodiments of the disclosure;

FIGS. 2A and 2B illustrate block diagrams of two
examples of mobile platforms configured to implement
embodiments of the disclosure;

FIG. 3 illustrates a schematic diagram of hardware and
software organization of a mobile device according to
embodiments of the disclosure;

FIG. 4 is a more detailed view of the mobile device of
FIGS. 2A, 2B and 3 according to embodiments of the disclo-
sure; and

FIG. 5 illustrates an example media streaming system con-
figured to implement embodiments of the disclosure;

FIG. 6 is a flow diagram of method steps for client regis-
tration and rights acquisition in a secure environment accord-
ing to embodiments of the disclosure;

FIG. 7 is a flow diagram of method steps for initializing a
content key in a secure environment for HTTP Live Stream-
ing (HLS) according to embodiments of the disclosure;

FIG. 8 is a flow diagram of method steps for playback of
HLS content according to embodiments of the disclosure; and

FIG. 9 is a flow diagram of method steps for playback of an
MP4 file according to embodiments of the disclosure.

DETAILED DESCRIPTION

The examples described are directed to a Digital Rights
Management (DRM) system operating in a secure environ-
ment within a mobile platform.

Although the present examples are described and illus-
trated as being implemented in a mobile device system, the
system described is provided as an example and not a limita-
tion. Mobile devices may include pocket personal computers
(PCs), cellular phones, music players, personal digital assis-
tants (PDAs), tablet devices and the like. These mobile
devices are typically configured to operate in a system that
includes the internet, PCs and the like to facilitate license and
media content transfer.

A typical licensing system is a digital rights management
(“DRM”) system. As those skilled in the art will appreciate,
the present example is suitable for application in a variety of
different types of systems that operate under a rights object.
The use of a playback period may be useful in the manage-
ment of licensed content for these types of systems.

In a first aspect, a method of providing digital rights man-
agement (DRM) for processing protected content in a mobile
platform is disclosed, the method including: providing an
application software module configured to implement a non-
critical security software module; and providing a critical
security module configured to run in a hardware module
comprising a trusted execution environment (TEE), wherein
the critical security module is configured to provide decryp-
tion, key management, key storage and processing, copy and
output control enforcement in the TEE; wherein the applica-
tion software module is in communication with a non-secure
memory module and wherein the critical software module is
in communication with a secure memory module.

In asecond aspect, amethod of separating the functionality
of a media streaming playback device is disclosed, the
method including: providing a non-secure user space; and
providing a secure space in communication with the user
space, wherein the non-secure user space is configured to
process a non-critical portion of client registration and rights

US 9,418,209 B2

3

acquisition, wherein the non-secure user space comprises a
client application and a client providing interface for secure
playback, and wherein the secure space is configured to pro-
cess a critical portion of client registration and rights acqui-
sition, wherein the secure space comprises a secure service
that implements critical digital rights management functions,
a parser secure service and a secure storage that cannot be
accessed by the non-secure user space.

In a third aspect, a mobile device configured to provide
digital rights management (DRM) for secure execution of
encrypted content is disclosed, the device including: one or
more computer processors; and a non-transitory computer-
readable storage medium comprising instructions that, when
executed, control the one or more computer processors to be
configured for: providing an application software module
configured to implement a non-critical software module; and
providing a hardware module, the hardware module compris-
ing a trusted execution environment (TEE) configured to
implement a critical software module, wherein the critical
security module is configured to provide decryption, key
management, key storage and processing, copy and output
control enforcement in the TEE; wherein the application soft-
ware module is in communication with a non-secure memory
module and wherein the hardware module is in communica-
tion with a secure memory module.

In a fourth aspect, a mobile device configured to separate
the functionality of media streaming playback of encrypted
content is disclosed, the device including: one or more com-
puter processors; and a non-transitory computer-readable
storage medium comprising instructions that, when executed,
control the one or more computer processors to be configured
for: providing a non-secure user space; and providing a secure
space in communication with the user space, wherein the
non-secure user space is configured to process a non-critical
portion of client registration and rights acquisition, wherein
the non-secure user space comprises a client application and
a client providing interface for secure playback, and wherein
the secure space is configured to process a critical portion of
client registration and rights acquisition, wherein the secure
space comprises a secure service that implements critical
digital rights management functions, a parser secure service
and a secure storage that cannot be accessed by the non-
secure user space.

FIG. 1 illustrates a content distribution system 100 config-
ured to implement embodiments of the disclosure. As shown,
the content distribution system 100 includes a content distri-
bution network (CDN) 102, a communications network 104,
a digital rights management (DRM) server 106 and an elec-
tronic device 108.

The communications network 104 includes a plurality of
network communications systems, such as routers and
switches, configured to facilitate data communication
between the CDN 102, the DRM server and the electronic
device 108. Persons skilled in the art will recognize that many
technically feasible techniques exist for building the commu-
nications network 104, including technologies practiced in
deploying the well-known internet communications network.

The electronic device 108 may include a computer system,
a set top box, a mobile device such as a mobile phone, or any
other technically feasible computing platform that has net-
work connectivity and is coupled to or includes a display
device and speaker device for presenting video frames, and
generating acoustic output, respectively.

The CDN 102 may include one or more computer systems
configured to serve download requests or streaming requests
for digital content received from the electronic device 108.
The digital content may reside as content files on a mass

10

15

20

25

30

35

40

45

50

55

60

65

4

storage system accessible to the computer system or available
as live stream from a tuner. The mass storage system may
include, without limitation, direct attached storage, network
attached file storage, or network attached block-level storage.
The digital content files may be formatted and stored on the
mass storage system using any technically feasible technique.
A data transfer protocol, such as the well-known hyper-text
transfer protocol (HTTP), may be used to download or stream
digital content from the CDN 102 to the electronic device
108. In some embodiments, the digital content is also stored
in MP4 (ISO base media file format as defined in ISO 14496-
12) file format. Apple HTTP Live Streaming (HLS),
Microsoft Smooth Streaming or Adobe dynamic streaming
all use HTTP as transfer protocol. MPEG-DASH adaptive
streaming also uses HT'TP transfer protocol.

The DRM server 106 serves requests for rights objects
associated with encrypted digital content files received from
the electronic device 108. In operation, an encrypted digital
content file downloaded from the CDN 102 by the electronic
device 108 must be decrypted before the digital content file
can be played. The rights object associated with the encrypted
digital content file is stored in the DRM server 106 and is
transmitted to the electronic device 108, which in turn uses
the rights object to decrypt the digital content file. When the
content is streamed live from the server, key material to derive
the content key is obtained dynamically from the DRM
server.

Rights objects typically regulate the use of content. Most
current DRM solutions rely on unique identification of elec-
tronic devices, such as mobile devices. In such systems each
rights object may be bound to a unique consumer electronics
device (or playback device), so the rights object stored in one
mobile device typically cannot be transferred or used by
another device. The rights object may be provided with infor-
mation to specify a playback period for the particular media
being controlled by that rights object. The rights objects are
typically stored separately from the content, typically in a
dedicated storage area such as a secure store (e.g., storage
space that cannot be accessed by user space).

DRM server 106 typically provides a collection of pro-
cesses for the secure distribution of multimedia content from
a service provider coupled to an insecure channel, such as the
Internet. Digital media content for viewing or playback
would typically include music files, picture files, video files,
documents, etc.

In particular, content may be anything that a provider
desires to protect such as music, video, multimedia, pictures
and the like. Content is typically regulated to prevent its
unauthorized use by providing licenses and/or other tools
such as encryption. Content may be audio, video, textual,
encrypted, unencrypted, compressed, uncompressed or oth-
erwise manipulated. In some embodiments, content is audio
video compressed and encrypted like MPEG-2 TS.

Although, in the above description, the content distribution
system 100 is shown with one electronic device 108 and one
CDN 102, persons skilled in the art will recognize that the
architecture of FIG. 1 contemplates only an exemplary
embodiment of the disclosure. Other embodiments may
include any number of electronic devices 108 and/or CDNs
102.

FIG. 2 illustrates a block diagram of two examples of
mobile platforms configured to implement embodiments of
the disclosure. In FIG. 2A, a mobile platform 200 may be
used for playback of standard definition (SD) content in elec-
tronic devices 108. Mobile platform 200 includes application
software 210, platform software 220, hardware 230, and non-
secure memory 240.

US 9,418,209 B2

5

Mobile platform 200 uses software obfuscation, allowing it
to protect SD content based on studio requirements. In FIG.
2A, the entire application security component (e.g., security
software 215) resides in the application software space 210
and uses non-secure memory 240. The security software 215
is software obfuscated, thus satisfying the SD content play-
back requirements of content providers. Software obfusca-
tion is well known and tools are provided by vendors such as
Irdeto and Arxan. Software obfuscation tools transform the
code and data, uses white box technology for cryptographic
functions, code integrity verification, and anti-debug protec-
tion. Using the tools makes it more difficult for hackers to
obtain content keys and access compressed clear data.

In FIG. 2B, a mobile platform 250 may be used for execu-
tion of software in secure space and secure memory in elec-
tronic devices 108. Mobile platform 250 includes application
software 260, platform software 270, hardware 280, non-
secure memory 290, and secure memory 295. In FIG. 2B,
security software is split into two components. Non-critical
software 265 is executed in the application software space
260 and critical security software 287 runs in secure part or
secure execution 285 of hardware, also known as a secure or
trusted execution environment (TEE). In some embodiments,
the critical security software 287 is configured to communi-
cate with and store secure contents in secure memory 295. In
some embodiments, non-critical software 265 is configured
to communicate with and store non-secure contents in non-
secure memory 290. In some embodiments, the secure and
non-secure contents are manipulated or processed and stored
separately from each other.

Currently software obfuscation tools are used to secure
DRM in the playback of SD format content, as described
above with reference to FIG. 2A. These tools cannot protect a
video path without affecting rendering performance and can
be compromised with tools as the code runs in the user space.
Studios require a protected video path meaning the video
component of the content can never appear in user space
memory in compressed form (before being decoded). In addi-
tion, the output buffers need to be protected based on HDMI
setting. For DRM used for content protection, all the keys and
sensitive data need to be handled using hardware security for
HD content. Even for studios, approved SD content hardware
security is desirable. In order to satisfy the HD robustness
rules, a chip that supports Trusted Execution Environment
(TEE) (e.g., ARM core chips) is used, such as described
above with reference to FIG. 2B. Trusted Execution Environ-
ment (TEE) thus provides a protected sandbox or secure
space to run sensitive software and also provides firewalls
between the various components including the renderer.

FIG. 3 illustrates a schematic diagram of hardware and
software organization of a mobile device according to
embodiments of the disclosure. In FIG. 3, electronic device
108 includes a partitioning of functionality between a secure
execution environment 330 and a normal or non-secure envi-
ronment 332. Hardware components include an application
processor 320A in the non-secure environment 332 and a
secure processor 3208 in the secure environment 330. Also
included in the non-secure environment 332 is non-secure
memory 3608S. Operating software in the non-secure environ-
ment includes an operating system (O/S) 336, content player
application or “app” 338, chipset application programming
interface (C/S API) component 340, and a non-secure (NS)
portion of a DRM client (DRM CLT-NS) 342. In some
embodiments, the operating system 336 may be an Android™
operating system 336 for mobile devices.

The components in the secure environment 330 are respon-
sible for establishing and maintaining secure communication

10

15

20

25

30

35

40

45

50

55

60

65

6

with DRM server 106 to obtain content key material to derive
content keys for decrypting content. Secure environment 330
includes a secure kernel 344, secure file system 346, DRM
agent 348, hardware decryption circuit (CRYP) 334, and
secure memory 3608. It also includes a secure (S) portion of
the DRM client (DRM CLT-S) 350 that may work together
with the non-secure DRM client 342 to establish communi-
cation with DRM server 106. In the remaining description the
term “DRM client” may be used to refer to the paired DRM
client portions 342, 350 as a single unit.

The non-secure DRM client 342 is mainly an interface (via
the API component 340) between the content player 338 and
the secure DRM client 350. In particular, the non-secure
DRM client 342 only sends requests to the latter to register
electronic device 108, obtain a rights object for a particular
media object, and enable decryption and playing of the media
object. The DRM Agent 348 is an API layer to access the
DRM server 106.

In some embodiments, the secure environment 330 may
employ components of the so-called TrustZone family,
including the secure processor 3208 realized according to the
ARM architecture, as well as the secure kernel 344 and secure
file system 346 which are specially tailored for security-
related uses. Establishing a secure communication channel
and execution space may be based on security features
offered by the hardware (SOC chipset) that is embedded in a
circuit board used to build a device (e.g., mobile phone hand-
set). While the chipset manufacturer provides the hardware,
the DRM provider loads firmware (code) such as the DRM
client and DRM agent 348.

FIG. 4 illustrates various components of an example elec-
tronic device 400 that can be implemented as a mobile device
described with reference to any of FIGS. 1-3 and 5-9. In some
embodiments, the electronic device may be implemented in
any form of device that can receive and playback streaming
video content, such as anyone or combination of a commu-
nication, computer, media playback, gaming, entertainment,
mobile phone, and/or tablet computing device.

The electronic device 400 includes communication trans-
ceivers 402 that enable wired and/or wireless communication
of device data 404, such as received data, data that is being
received, data scheduled for broadcast, data packets of the
data, etc. Example transceivers include wireless personal area
network (WPAN) radios compliant with various IEEE 802.15
(Bluetooth™) standards, wireless local area network
(WLAN) radios compliant with any of the various IEEE
802.11 (WiFi™) standards, wireless wide area network
(WWAN) radios for cellular telephony, wireless metropolitan
area network (WMAN) radios compliant with various IEEE
802.15 (WIMAX™) standards, and wired local area network
(LAN) Ethernet transceivers.

The electronic device 400 may also include one or more
data input ports 406 via which any type of data, media con-
tent, and/or inputs can be received, such as user-selectable
inputs, messages, music, television content, recorded video
content, and any other type of audio, video, and/or image data
received from any content and/or data source. The data input
ports may include USB ports, coaxial cable ports, and other
serial or parallel connectors (including internal connectors)
for flash memory, DVDs, CDs, and the like. These data input
ports may be used to couple the electronic device to compo-
nents, peripherals, or accessories such as microphones and/or
cameras.

The electronic device 400 includes one or more processors
408 (e.g., any of microprocessors, controllers, and the like),
which process computer-executable instructions to control
operation of the device. Alternatively or in addition, the elec-

US 9,418,209 B2

7

tronic device can be implemented with any one or combina-
tion of software, hardware, firmware, or fixed logic circuitry
that is implemented in connection with processing and con-
trol circuits, which are generally identified at 410. Although
not shown, the electronic device can include a system bus or
data transfer system that couples the various components
within the device. A system bus can include any one or com-
bination of different bus structures, such as a memory bus or
memory controller, a peripheral bus, a universal serial bus,
and/or a processor or local bus that utilizes any of a variety of
bus architectures.

The electronic device 400 also includes one or more
memory devices 412 that enable data storage, examples of
which include random access memory (RAM), non-volatile
memory (e.g., read-only memory (ROM), flash memory,
EPROM, EEPROM, etc.), and a disk storage device. A disk
storage device may be implemented as any type of magnetic
or optical storage device, such as a hard disk drive, a record-
able and/or rewriteable disc, any type of a digital versatile
disc (DVD), and the like. The electronic device 400 may also
include a mass storage media device.

A memory device 412 provides data storage mechanisms
to store the device data 404, other types of information and/or
data, and various device applications 414 (e.g., software
applications). For example, an operating system 416 can be
maintained as software instructions within a memory device
and executed on the processors 408. The device applications
may also include a device manager, such as any form of a
control application, software application, signal-processing
and control module, code that is native to a particular device,
ahardware abstraction layer for a particular device, and so on.
The electronic device may also include a proxy application
418 and a media player 420, such as for a client device. The
electronic device also includes a trusted execution environ-
ment (TEE) 422 that can be implemented in any one or
combination of software, hardware, firmware, or the fixed
logic circuitry to implement embodiments of content decryp-
tion and playback in a secure environment in a mobile plat-
form.

The electronic device 400 also includes an audio and/or
video processing system 424 that generates audio data for an
audio system 426 and/or generates display data for a display
system 428. The audio system and/or the display system may
include any devices that process, display, and/or otherwise
render audio, video, display, and/or image data. Display data
and audio signals can be communicated to an audio compo-
nent and/or to a display component via an RF (radio fre-
quency) link, S-video link, HDMI (high-definition multime-
dia interface), composite video link, component video link,
DVI (digital video interface), analog audio connection, or
other similar communication link, such as media data port
430. In implementations, the audio system and/or the display
system are integrated components of the example electronic
device.

As will be understood by the flow charts below (FIGS. 6-9),
audio and/or video processing system 424 may be partially or
wholly included in trusted execution environment 422. In
some embodiments, there are a plurality of audio and/or video
processing systems 424, with at least one audio and/or video
processing system 424 dedicated to processing and rendering
data or content in a secure environment and at least one audio
and/or video processing system 424 dedicated to processing
and rendering data or content in a non-secure environment.

As used herein, content delivery describes the delivery of
media “content” such as audio or video or computer software
and games over a delivery medium such as broadcasting or
the Internet. Content delivery generally has two parts: deliv-

35

40

45

8

ery of finished content for digital distribution, with its accom-
panying metadata; and delivery of the end product to the
end-user.

Asusedherein, “streaming media” is media that is received
by and presented to an end-user while being delivered by a
streaming provider using Adaptive Bit Rate streaming among
other methods. The name refers to the delivery method of the
medium rather than to the medium itself. The distinction is
usually applied to media that are distributed over telecommu-
nications networks, e.g., “on-line,” as most other delivery
systems are either inherently streaming (e.g., radio, televi-
sion) or inherently non-streaming (e.g., books, video cas-
settes, audio CDs). Hereinafter, on-line media and on-line
streaming using Adaptive Bit Rate among other methods will
be referred to as “media” and “streaming.”

Adaptive Bit Rate (ABR) streaming is a technology that
works by breaking the overall media stream into a sequence
of'small HTTP-based file downloads, each download loading
one short segment of an overall potentially unbounded trans-
port stream. As the stream is played, the client (e.g., the media
player) may select from a number of different alternate
streams containing the same material encoded at a variety of
data rates, allowing the streaming session to adapt to the
available data rate. At the start of the streaming session, the
player downloads/receives a manifest containing the meta-
data for the various sub-streams which are available. Since its
requests use only standard HTTP transactions, Adaptive Bit
Rate streaming is capable of traversing a firewall or proxy
server that lets through standard HTTP traffic, unlike UDP-
based protocols such as RTP. This also allows a content deliv-
ery network (CDN) to readily be implemented for any given
stream. ABR streaming methods have been implemented in
proprietary formats including HTTP Live Streaming (HLS)
by Apple, Inc and HTTP Smooth Streaming by Microsoft,
Inc. ABR streaming has been standardized as ISO/IEC
23009-1, Information Technology—Dynamic adaptive
streaming over HTTP (DASH): Part 1: Media presentation
description and segment formats.

An increasing number of video playback devices, such as
the Apple iPad and other mobile devices prefer video content
to be delivered via ABR streaming rather than streamed con-
tinuously. The iPad, using Apple’s HLS format, receives the
manifest as an m3u8 file that contains links, media uniform
resource identifiers (URIs), to each of the segments or
“chunks” of video content, and processes the manifest file to
retrieve and play back each media segment in turn. In this
disclosure, HLS represents the range of protocols that media
segment content and employ a playlist/manifest file to man-
age playback.

Having disclosed some components of a computing sys-
tem, the disclosure now turns to FIG. 5, which illustrates an
example media streaming system embodiment 500. The com-
munications between the entities depicted in FIG. 5 can occur
via one or more wired or wireless networks. Further, the
devices can communicate directly, via the World Wide Web,
or via an application programming interface (API). A play-
back device 502, such as a mobile electronic device tablet
device, first makes a request to a media server 504 for play-
back of media content, such as an episode of Star Trek.
Typically, the media server 504 resides in a network, such as
the Internet.

In HLS, the media server 504 receives the request and
generates or fetches a manifest file 506 to send to the playback
device 502 in response to the request. Example formats for the
manifest file 506 include the m3u and m3u8 formats. An
m3u8 file is a specific variation of an m3u encoded using
UTF-8 Unicode characters. The m3u file format was initially

US 9,418,209 B2

9

used in the WINAMP Media Player for only audio files, but
has since become a de facto playlist standard on many media
devices for local and/or streaming media, including music
and other media types. Many media devices employ varia-
tions of the m3u file format, any of which can be used accord-
ing to the present disclosure. A manifest file can include links
to media files as relative or absolute paths to a location on a
local file system, or as a network address, such as a URI path.
The m3u8 format is used herein as a non-limiting example to
illustrate the principles of manifest files including non-stan-
dard variants.

The manifest file 506 includes a list of Uniform Resource
Locators (URLs) to different representations of the requested
segmented media content. Before or at the time of the request,
the media server 504 generates or identifies the media seg-
ments of the requested media content as streaming media
content 510. The media segments of the streaming media
content 510 are generated, either by the media server 504, the
content producer, or some other entity, by splitting the origi-
nal media content 508. Upon receiving the manifest file 506,
the playback device 502 can fetch a first media segment for
playback from the streaming media content 510, and, during
playback of that media segment or chunk 512, fetch a next
media segment for playback after the first media segment, and
so on until the end of the media content.

In some embodiments, architectural methods are provided
which include two main areas: (1) DRM architecture includ-
ing interface to the player and (2) HLS and MP4 player
architecture. In some embodiments, DRM functions include:
(1) Registration, (2) Rights Object Acquisition and Verifica-
tion, (3) Key Management, (4) Content Protection, and (5)
Interaction with the player to provide the decrypted encoded
data.

As described above, device keys have to be protected using
the hardware security (e.g., TEE). Generally a SOC provides
a way to secure device keys (e.g., RSA Private Key, Key
Encryption Key). These keys can be used only inside the
secure space. The SOC while running in secure mode has
access to secure RAM and execution memory that cannot be
accessed by the user space. The secure space is limited-in case
the secure code size is larger than a 500 KB (Kilo Bytes) there
may be a code swap during execution, reducing the perfor-
mance. The entire DRM framework cannot be ported to the
secure space.

In some embodiments, an application or user agent uses
DRM API, to register, obtain rights acquisition, key acquisi-
tion and playback. The API’s trigger sends requests to rights
acquisition server and/or key management server. This trig-
gers DRM request and DRM reply message transaction
between the client and servers. In order to protect the content
key all the way from acquisition to generation, parts of the
message processing is performed inside the secure space.
Rights extraction, parsing, and verification functions are all
performed inside the secure service. After verification of the
rights, the content key is derived and decryption engine is set
inside the secure space. The user space has only access to the
session of the transaction, content ID or URL for playback.
The DRM also provides the decrypt interface API’s inside the
secure space as the video path has to be protected.

In some embodiments, in order to satisfy protected video
path requirement, an HLS player is also split into two parts.
The front end or the user part of the player that communicates
with the network to download the HLS Manifest and chunks
provides player API for the application and plays the content.
The secure part of the player includes a HLLS TS parser,
demultiplexer and manages secure buffer handles (bufters for
decoding the video). The SOC provides handles in the user

10

15

20

25

30

35

40

45

50

55

60

65

10

space which is translated to appropriate address in the secure
space for decrypted decoded/encoded video. Even though in
some embodiment we discuss Apple’s HLS streaming, same
method applies to MPEG-DASH transport based version
(MPEG-2) and DLNA/DTCP-IP based streaming regarding
secure part of the player.

In some embodiments, the HLS player passes the
encrypted TS chunk to the TEE as standard HLS encrypts the
whole TS, and triggers DRM Decrypt based on the session ID
inside the secure space. DRM at this stage has the content key
set in the engine. The decrypted data is demultiplexed into
audio, video and closed caption text. Audio and closed cap-
tion text data is pulled by the user space player using non-
secure buffers. An HLS Video Push API passes the secure
buffer handle, encrypted data to the TEE. Inside the secure
space after translation the secure buffer is populated with
decrypted encoded video. Since the secure bufter is fire wall
protected, an Openmax API call to decode will use secure
buffer maintaining protection of the video back into the user-
space. Openmax API is the Khronos Open Source APl imple-
mented by the decoder vendors to decode encoded stream.
This is available in the Android System used in the present
example.

In the case of an MP4 file format, metadata is in the clear,
so demultiplexing is not done inside the secure space. For
example, unlike HLS, in MP4 only an mdat box or content
data is encrypted. Metadata defines the properties of the
video, audio and data tracks in the file. The properties include
size, resolution, presentation time stamp, protection type
used, etc. This applies to MPEG-DASH, MPEG-4 file format,
fragmented MP4 files, Microsoft smooth streaming, etc.

For HLS and/or MP4, video data after decryption go into
secure buffers and are pulled by user space API to decode and
render. Audio packets after decryption are passed to user
space buffers. In order to ensure that the decrypted audio
packets are really audio packets, the decrypted audio buffer is
scanned for audio specific data. This is done to ensure that the
user space code is not compromised and video data is not
presented as audio data in order to bypass the protected video
path.

In some embodiments, the same mechanism may be used
in case MPEG-2 TS headers are in the clear, and only the
payload is encrypted for HTTP live streaming. In addition,
the interface API’s between the player and the DRM, should
to handle high definition multimedia interface (HDMI) out-
put correctly. Based on DRM copy protection rules and high
bandwidth digital content protection (HDCP) is enabled or
disabled, output uncompressed video buffer can be mirrored
to HDMI port or not and this is set as oplv (Output Protection
Flag) flag in SetKey API to notify the user in case HDMI cable
is connected but HDCP is not enabled. The DRM Decrypt
function inside the TEE checks if HDMI Mirroring can be
allowed, e.g., meaning HDCP is active, and will allow play-
back only for 10 seconds and will throw error if HDCP is not
active. The user can take action to enable HDCP using the
user interface.

FIG. 6 is a flow diagram of a process 600 for client regis-
tration and rights acquisition in a secure environment accord-
ing to embodiments of the disclosure. Process 600 may be
implemented by a user space environment 610 and a secure
space (TEE) 620. User space environment 610 includes DRM
Server 605, Client Application 615 and SecureClient SDK
625. Secure space (TEE) 620 includes DRMSecureService
(TEE) 630 and SecureStore (TEE) 635. In order to satisty
robustness, parts of DRM message requests and responses are
processed inside the secure space (TEE) 620. In some
embodiments, Secure Client SDK (Software Development

US 9,418,209 B2

11

Kit) 625 provides API for Secure playback of both the
MPEG-2 transport and MPEG_4 containers. DRMSecure-
Service 630 implements security critical functions inside the
secure space, for example, rights verification.

In a first step 640, a client (e.g., via Client Application 615)
executes a register command (e.g., via SecureClient SDK
625). Secure Client Software Development Kit (SDK) 625 is
provided for service providers and one of the API’s is to
register the client to the DRM server and it runs in the user
space and is part of the application.

In asecond step 645, third step 650, and fourth step 655, the
register request message is completed and signed using the
client’s credentials (e.g., client’s private key). As shown, in
second step 645, SecureClient SDK 625 communicates with
DRMSecureService (TEE) 630 to complete the register mes-
sage. In third step 650, DRMSecureService (TEE) 630 com-
municates with SecureStore (TEE) 635 to obtain client cre-
dentials. In fourth step 655, the message is completed.

In a fifth step 660 and sixth step 665, the request is sent to
the DRM Server 605 and registration completed. In fifth step
660, DRMSecureService (TEE) 630 communicates with
SecureClient SDK 625 to register the request message. In
sixth step 665, SecureClient SDK 625 communicates with
DRM Server 605 to register the request message and receive
a response back.

In a seventh step 670 and eighth step 675, the client triggers
arights objectrequest for content and the request is sent to the
server. In seventh step 670, Client Application 615 commu-
nicates with SecureClient SDK 625 to get rights for content
with content ID (CID). In eighth step 675, SecureClient SDK
625 communicates with DRM Server 605 to request an autho-
rization token and rights.

In a ninth step 680, the server sends the authentication
token and the rights message. In ninth step 680, DRM Server
605 communicates with SecureClient SDK 625 to send the
authentication information.

In a tenth step 685, cleventh step 690 and twelfth step 695,
the client processes the response inside secure space, extracts
the rights and saves in the secure memory. In tenth step 685,
SecureClient SDK 625 communicates with DRMSecureSer-
vice (TEE) 630 to process the message. In eleventh step 690,
DRMSecureService (TEE) 630 communicates with Secur-
eStore (TEE) 635 to process the message, save rights and the
token. In twelfth step 695, DRMSecureService (TEE) 630
communicates with SecureClient SDK 625 to provide the
status.

FIG. 7 is a flow diagram of a process 700 for initializing a
content key in a secure environment for HTTP Live Stream-
ing (HLS) according to embodiments of the disclosure. User
space environment 710 includes Media Server 705, Client
Application 715 and SecureClient SDK 725. Secure space
(TEE) 720 includes DRMSecureService (TEE) 730 and
SecureStore (TEE) 735. Process 700 shows content key
acquisition for an example HT TP Live Streaming (HLS) use
case.

In a first step 740, a client executes a play command for a
particular HLS URI. In first step 740, Client Application 715
communicates with SecureClient SDK 725 to play the URI.

In a second step 745 and a third step 750, a security client
(e.g., SecureClient SDK 725) requests a manifest file and
extracts the key URI. In second step 745, SecureClient SDK
725 communicates with Media Server 705 to get the manifest
file. In third step 750, SecureClient SDK 725 module parses
the manifest file and obtains the key tag and initial vector
(IV). The key tag in HLS manifest provides the URI or infor-
mation to obtain the key and IV to decrypt the content.

10

15

20

25

30

35

40

45

50

55

60

65

12

In a fourth step 755 and fifth step 760, the key URI is
processed inside secure space and a content key is computed.
In fourth step 755, SecureClient SDK 725 communicates
with DRMSecureService (TEE) 730 to process the key tag
and set IV. In fifth step 760, DRMSecureService (TEE) 730
parses the key tag and computes the key. The key tag in HL.S
manifest provides the URI or information to obtain the key
and initial vector or I'V to decrypt the content. The content key
is computed inside the secure space.

In a sixth step 765, the content key and IV are saved in the
secure memory. In sixth step 765, DRMSecureService (TEE)
730 is in communication with SecureStore (TMM) or TEE
735 to save the key, IV.

FIG. 8 is a flow diagram of a process 800 for playback of
HLS content according to embodiments of the disclosure.
User space environment 810 includes Media Server 805,
Client Application 815, SecureClient SDK 825, and Decode-
Render 830. Secure space (TEE) 820 includes Parser Secure-
Service (TEE) 835 and DRM SecureService TEE 840. In
process 800, the HLS format is an MPEG-2 transport stream,
and the entire transport stream is encrypted. The sequence for
rendering HD HLS content is as follows. It should be appre-
ciated that the device is registered and authenticated and the
content key is set as described in FIGS. 6 and 7.

In a first step 845, SecureClient SDK 825 obtains HLS
content data from Media Server 805. Media Server 805 is
responsible for generating the HLS manifests and media
chunks and providing them to the client on request. Media
Server 805 interfaces with the DRM server to encrypt the
HLS chunks before transmitting to the client.

In a second step 850 and third step 855, SecureClient SDK
825 pushes encrypted data to Parser SecureService (TEE)
835 and provides a secure buffer handle (e.g., DRM Secure-
Service TEE 840). The secure bufter handle can be a virtual or
abstract handle that can be referenced or created in user
application space without root privileges, allowing a single
function that resides in both secure and non-secure applica-
tion space to use the secure buffer handle’s virtual or abstract
handle. If the handles are physical addresses, then the func-
tion residing in application user space may not have any read
access. Parser Secure Service 835 is configured to parse or
demultiplex the HL.S MPEG-2 packets into video, audio and
closed caption data after decryption. Video data is copied only
to secure memory. The secure buffer handle from user appli-
cation space is translated to firewall memory inside the secure
space. This memory is configured to be read only by decoder
component within the secure service. In some embodiments,
the decoder component is OpenMAX IL. decoder component
and uses a non-tunnel way of communication. DRM Secure
Service 840 is configured to generate/process DRM mes-
sages, generate content keys, provide decrypted interfaces to
Parser Secure Service 835 and enforce copy protection rules.
In second step 850, SecureClient SDK 825 communicates
with Parser SecureService (TEE) 835 to push content. In third
step 855, Parser SecureService (TEE) 835 communicates
with DRM SecureService TEE 840 to decrypt the content.

In a third step 855, a secure parser service (e.g., Parser
SecureService (TEE) 835) inside the TEE invokes a secure
DRM service (e.g., DRM SecureService TEE 840) to decrypt
the content chunks.

In a fourth step 860, DRM SecureService TEE 840 checks
for if HDMI is enabled and required based on copy control
bits (CCI) and then decrypts the content and returns it to the
secure parser service (e.g., Parser SecureService (TEE) 835)
in a step 865.

In a sixth step 870, the secure parser service demultiplexes
the clear transport stream into video, audio and closed caption

US 9,418,209 B2

13

streams. In a seventh step 875, the audio and closed caption
streams are returned in normal buffer. Video remains in secure
buffer provided by the secure buffer handle. The User Space
client (e.g., Client Application 815 and SecureClient SDK
825) cannot see the clear encoded video.

In an eighth step 880, SecureClient SDK 825 communi-
cates with Decode Render 830 to decode the video and render
to a liquid crystal display (LCD). Decode Render 830 (e.g.,
Open max [L/ALAPI is used in the example Android System)
can read the secure buffer protected by a firewall (not shown).
The firewall prevents any other user application from access-
ing the secure video buffers. The firewall configuration is set
during secure boot of the device. This allows the platform
Decoder Render 830 to read the Secure buffer, decode and
render the video. Audio and closed caption data are in user
space buffers and rendered also.

FIG.9is a flow diagram of a process 900 for playback of an
MP4 file according to embodiments of the disclosure. User
space environment 910 includes Media Server 905, Client
Application 915, SecureClient SDK 925, and Decode-Ren-
der 930. Secure space (TEE) 920 includes Parser SecureSer-
vice (TEE) 935 and DRM SecureService TEE 940. MP4
playback may be used for a file download or sync and go use
case.

In a first step 945, Client Application 915 downloads a
content file from Media Server 905.

In a second step 950, SecureClient SDK 925 executes a
play command after receiving the content file from Client
Application 915.

In a third step 955, because MP4 metadata is in clear,
encrypted video and audio buffers are pushed into secure
space. In third step 955, SecureClient SDK 925 pushes video
and audio packets into Parser SecureService (TEE) 935. As
described above, metadata refers to video, audio description,
size and location in the file. Since this information is in the
clear (e.g., not encrypted), parsing need not be done in secure
space.

In a fourth step 960, MP4 parser class requests DRM
Service decrypt function. In fourth step 960, Parser Secure-
Service (TEE) 935 communicates with DRM SecureService
TEE 940.

In a fifth step 965, the DRM Service verifies rights, checks
if HDMI is enabled and then decrypts the content.

In a sixth step 970, the DRM SecureService TEE 940
communicates with Parser SecureService (TEE) 935 to pro-
vide the decrypted (clear) content.

In a seventh step 975 and eighth step 980, the parser checks
if audio buffer is really audio (and not video) and sends the
audio to user space in the clear. When the parser checks the
audio buffer, it is done to ensure that only audio data is sent to
unsecure memory, and that video data does not get mislabeled
and sent to unsecure memory. In eighth step 980, Parser
SecureService (TEE) 935 communicates with SecureClient
SDK 925 to send the audio content to the user space. The
video clear compressed data will be in secure buffer and user
space will only have to handle the video secure buffer.

In a ninth step 985, SecureClient SDK 925 communicates
with Decode Render 930 to render the content. Decode Ren-
der 930 has access to secure buffer. In some embodiments,
Openmax I[./ALAPI is used as in HLS case to decode and
render.

As explained above, DRM architecture for TEE enables
protection for all the permanent keys by using device hard-
ware keys. Rights object creation, process and verification is
performed in TEE, so user entitlement is not compromised.
Additionally, sensitive functions of DRM, like message sign-
ing, decryption using RSA private key is handled inside the

10

15

20

25

30

35

40

45

50

55

60

65

14

secure space. All key wrappings, unwrapping code is
executed inside the secure service. Functions like content key
derivation, session key derivation execution happens inside
TEE, so are also secure. Even though session keys or inter-
mediate wrapping keys are not permanent, their exposure can
lead to eventual exposure of a content key.

In the case of an HLS Player, TS parser is implemented
inside the TEE, so the demultiplexing of video and audio
packets occurs inside the secure space. The decrypted
encoded video uses secure buffers. This way the decrypted
decoded video packets are not accessible by user space
memory bus. A decoder (e.g., accessed using Open MAX
API) is programmed to use secure buffers and also the output
buffers can also be fire wall protected.

DTCP-IP (DLNA) protected content streaming inside a
home network can be treated in the same manner as HLS as
the entire MPEG 2-TS stream is encrypted using DTCP-IP.
DTCP-IP adds header in front of the payload. Header con-
tains information to derive keys.

In the case of MP4 file format, the video and audio tracks
are encrypted but already demultiplexed inside the file. Video
data is decrypted inside the secure space and copied to secure
buffers and User space will only have handle to the secure
buffer. Open MAX decoder uses the protected memory and
will get the handle to secure buffer that contains the decrypted
encoded video.

An HLS TS parser and MP4 player component inside the
secure space initiates DRM decrypt function inside the secure
space, thus preventing any attacks to decrypt interface. HDMI
output protection is also enforced inside secure service as
Decrypt functions checks it HDCP is required and if required,
then checks if enabled. If HDCP is not enabled when required
the decryption will fail after 10 seconds.

The above description of the disclosed embodiments is
provided to enable any person skilled in the art to make or use
the disclosure. Various modifications to these embodiments
will be readily apparent to those skilled in the art, and the
generic principles described herein can be applied to other
embodiments without departing from the spirit or scope of the
disclosure. Thus, it is to be understood that the description
and drawings presented herein represent exemplary embodi-
ments of the disclosure and are therefore representative of the
subject matter which is broadly contemplated by the present
disclosure. It is further understood that the scope of the
present disclosure fully encompasses other embodiments and
that the scope of the present disclosure is accordingly limited
by nothing other than the appended claims.

What is claimed is:

1. A method of providing digital rights management
(DRM) for processing protected content in a mobile platform,
the method comprising:

providing an application software module configured to

implement a non-critical security software module; and

providing a critical security module configured to run in a

hardware module comprising a trusted execution envi-
ronment (TEE), wherein the critical security module is
configured to receive content data and to provide
decryption, key management, key storage and process-
ing, and copy and output control enforcement in the
TEE, wherein the TEE is configured to separate the
content data into video data, audio data, and textual data,
to provide a secure buffer handle to provide a secure
buffer to store the video data, and to transfer the audio
data and the textual data to the application software
module, the secure buffer protected by a firewall config-
ured to prevent a user application other than a render
application from accessing the secure buffer;

US 9,418,209 B2

15

wherein the application software module is in communi-
cation with a non-secure memory module and wherein
the critical security module is in communication with a
secure memory module.

2. The method of claim 1, wherein one or more handles or
pointers shared with the application software module are used
to control demultiplexed, decrypted content data in the secure
memory module.

3. The method of claim 2, wherein the critical security
module is configured to receive the content data and rights
objects associated with content files.

4. The method of claim 3, wherein the critical security
module is configured to receive the content data and the rights
objects from a local SD card memory.

5. The method of claim 3, wherein the content data com-
prises encrypted, compressed audio and video data and
optionally encrypted textual data.

6. The method of claim 5, wherein the content data is
transferred to the TEE and the content data is decrypted.

7. The method of claim 5, wherein the encrypted content
data comprises HTTP Live Streaming (HLS) data, DLNA/
DTCP-IP data, or MPEG-DASH transport based (MPEG-2)
data.

8. The method of claim 1, wherein the video data is stored
in the secure memory module.

9. The method of claim 1, wherein the application software
module cannot read the secure memory module and secure
DRM data.

10. A method of providing digital rights management
(DRM) for processing protected content in a mobile platform,
the method comprising:

providing an application software module configured to

implement a non-critical security software module; and

providing a critical security module configured to run in a

hardware module comprising a trusted execution envi-
ronment (TEE), wherein the critical security module is
configured to receive content data and to provide
decryption, key management, key storage and process-
ing, and copy and output control enforcement in the
TEE, wherein the TEE is configured to receive the con-
tent data and rights objects associated with content files,
the content files comprise separated encrypted, com-
pressed audio and video data, the TEE is configured to
provide a secure buffer to store the video data, the secure
buffer protected by a firewall configured to prevent a
user application other than a render application from
accessing the secure buffer;

wherein the application software module is in communi-

cation with a non-secure memory module and wherein
the critical security module is in communication with a
secure memory module.

11. The method of claim 10, wherein the content data is
transferred to the TEE and decrypted.

12. The method of claim 11, wherein the decrypted content
audio data is parsed to verify that it is audio data.

13. The method of claim 11, wherein the video data is
stored in the secure memory module.

14. The method of claim 10, wherein the encrypted content
data comprises MPEG-DASH ISO base media data, MP4
data, or Microsoft smooth streaming data.

15. A method of separating the functionality of a media
streaming playback device, the method comprising:

providing a non-secure user space in the media streaming

playback device; and

providing a secure space, in the media streaming playback

device, in communication with the non-secure user
space,

5

10

15

20

25

30

35

40

45

50

55

60

65

16

wherein the non-secure user space is configured to process
a non-critical portion of client registration and rights
acquisition, wherein the non-secure user space com-
prises a client application and a client providing inter-
face for secure playback,

wherein the secure space is configured to process a critical

portion of the client registration and the rights acquisi-
tion, wherein the secure space comprises a secure ser-
vice that implements critical digital rights management
functions, a parser secure service and a secure storage
protected by a firewall configured to prevent a user appli-
cation other than a render application from accessing the
secure storage, and

wherein signals for the client registration flow from the

non-secure user space to the secure space to the non-
secure user space.

16. The method of claim 15, wherein the non-critical por-
tion of the client registration and the rights acquisition com-
prises providing a register request and requesting an authori-
zation token and rights message.

17. The method of claim 15, wherein the critical portion of
the client registration and the rights acquisition comprises
obtaining client credentials, processing a rights message to
extract rights information, and saving the extracted rights
information.

18. The method of claim 15, wherein the media streaming
playback device is an HTTP Live Streaming (HLS) device,
DLNA/DTCP-IP device, or MPEG-DASH transport based
(MPEG-2) device.

19. The method of claim 18, further comprising:

wherein the non-secure user space is configured to process

a non-critical portion of deriving a content key and
wherein the secure space is configured to process a criti-
cal portion of the deriving the content key.

20. The method of claim 19, wherein the non-critical por-
tion of the deriving the content key comprises providing a
play request, obtaining a manifest file, parsing the manifest
file and obtaining a key tag.

21. The method of claim 20, wherein the critical portion of
the deriving the content key comprises, taking as input the key
tag, computing the content key, and saving the content key.

22. The method of claim 19, further comprising:

wherein the non-secure user space is configured to process

a non-critical portion of playback of content and
wherein the secure space is configured to process a criti-
cal portion of the playback of content.

23. The method of claim 22, wherein the non-critical por-
tion of the playback of content comprises obtaining content
data.

24. The method of claim 22, wherein the critical portion of
the playback of content comprises decrypting content, de-
multiplexing a transport stream into video, audio and closed
caption streams, and enforcing output protection.

25. The method of claim 15, wherein the media streaming
playback device is a MPEG-DASH ISO base media device,
an MP4 device, or Microsoft smooth streaming device.

26. The method of claim 25, further comprising:

wherein the non-secure user space is configured to process

a non-critical portion of playback of content and
wherein the secure space is configured to process a criti-
cal portion of the playback of content.

27. The method of claim 26, wherein the non-critical por-
tion of the playback of content comprises downloading an
MP4 file, providing a play request for the MP4 file, and
demultiplexing the MP4 file.

28. The method of claim 26, wherein the critical portion of
the playback of content comprises decrypting content, veri-

US 9,418,209 B2

17

fying user rights, verifying if an audio buffer includes audio
data, and enforcing output protection.

29. A mobile device configured to provide digital rights
management (DRM) for secure execution of encrypted con-
tent, the device comprising:

one or more computer processors; and

a non-transitory computer-readable storage medium com-

prising instructions that, when executed, control the one

or more computer processors to be configured for:

providing an application software module configured to
implement a non-critical security software module;
and

providing a hardware module, the hardware module com-

prising a trusted execution environment (TEE) config-
ured to implement a critical software module, wherein
the critical software module is configured to receive
content data and to provide decryption, key manage-
ment, key storage and processing, and copy and output
control enforcement in the TEE, wherein the TEE is
configured to separate the content data into video data,
audio data, and textual data, to provide a secure buffer
handle to provide a secure buffer to store the video data,
and to transfer the audio data and the textual data to the
application software module, the secure buffer protected
by a firewall configured to prevent a user application
other than a render application from accessing the secure
buffer;
wherein the application software module is in commu-
nication with a non-secure memory module and
wherein the hardware module is in communication
with a secure memory module.

30. A mobile device configured to separate the functional-
ity of media streaming playback of encrypted content, the
device comprising:

one or more computer processors; and

a non-transitory computer-readable storage medium com-

prising instructions that, when executed, control the one

or more computer processors to be configured for:

providing a non-secure user space in the mobile device;
and

providing a secure space, in the mobile device, in com-
munication with the non-secure user space,

wherein the non-secure user space is configured to pro-
cess a non-critical portion of client registration and

10

15

20

25

30

35

40

18

rights acquisition, wherein the non-secure user space
comprises a client application and a client providing
interface for secure playback,

wherein the secure space is configured to process a criti-
cal portion of the client registration and the rights
acquisition, wherein the secure space comprises a
secure service that implements critical digital rights
management functions, a parser secure service and a
secure storage protected by a firewall configured to
prevent a user application other than a render appli-
cation from accessing the secure storage, and

wherein signals for the client registration flow from the
non-secure user space to the secure space to the non-
secure user space.

31. A mobile device configured to provide digital rights
management (DRM) for secure execution of encrypted con-
tent, the device comprising:

one or more computer processors; and

a non-transitory computer-readable storage medium com-

prising instructions that, when executed, control the one

or more computer processors to be configured for:

providing an application software module configured to
implement a non-critical security software module;
and

providing a hardware module, the hardware module
comprising a trusted execution environment (TEE)
configured to implement a critical software module,
wherein the critical software module is configured to
receive content data and to provide decryption, key
management, key storage and processing, and copy
and output control enforcement in the TEE, wherein
the TEE is configured to receive the content data and
rights objects associated with content files, the con-
tent files comprise separated encrypted, compressed
audio and video data, the TEE is configured to provide
a secure buffer to store the video data, the secure
buffer protected by a firewall configured to prevent a
user application other than a render application from
accessing the secure buffer;

wherein the application software module is in commu-
nication with a non-secure memory module and
wherein the hardware module is in communication
with a secure memory module.

#* #* #* #* #*

